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A Probabilistic Analysis on Variability of Fatigue
Crack Growth Using the Markov Chain

Jung -Kyu KIM* and Dong-Suk SHIEM**
(Received March 26, 1998)

Understanding the stochastic properties of variability in fatigue crack growth is important to
maintaining the reliability and safety of structures. In this study. a stochastic model is proposed
to describe crack growth behavior considering the variability of fatigue crack growth rates due
to the heterogeneity of material. Fatigue life distribution is then predicted based on this model.
To construct this model, fatigue tests are conducted on a high strength aluminum alloy 7075 T6
under constant stress intensity factor range control. The variability of fatigue crack growth rates
is expressed by random variables Z and y based on the variability of material constants (' and
m of the Paris-Erdogan equation. The distribution of fatigue life under constant stress intensity
factor ranges is evaluated by the stochastic Markov chain model based on the Paris-Erdogan
equation, The merit of the proposed model is that only a small number of tests are required to
determine this function, and fatigue life required 10 reach certain crack length at a given stress
intensity factor range can be easily predicted.
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damage due to fatigue loading i engineering
design, Is important to mainatin reliability and
safety in machinery structures. Much experimen-
tal data s therefore necessary n order to evaluate
the charvacteristics of the fatgue process and
ensure safety during service loading,

Typically. experimental 1investigations  of
fatigue crack growth under constant amplitude
cyclic loading have been performed to find the
curves relating fatigue crack length o 1o the
number of cycles N. However. the crack growth
process contains various physical uncertainties
caused by the heterogeneity of materials. There-
fore. many attempts have been recently made to
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formulate stochastic models for fatigue crack
growth phenomena and to clarify the properties
associated with them.

These stochastic models may be separated into
two types: models which are derived from a ran-
domization of the Paris-Erdogan equation
(1963), which is well known as a fundamental
law for fatigue crack growth (Lin and Yang,
1985; Ishikawa and Tsurui, 1987; Yoon, Yang
and Yoon, 1992), and models that analyze the
stochastic nature of fatigue crack growth using
the Markov chain or the Markov process(Bog-
danoff, 1978; Bogdanoff and Kozin, 1980; Y oshio,
Takao and Hisanobu, 1983; Kozin and Bog-
danoff, 1983; Lise, Rune and Lara, 1991; Kim and
Kim, 1995)

In the first type, a generalized Fokker-Planck
equation is derived by randomizing the empirical
Paris- Erdogan equation, which describes the tem-
poral variability of crack length distribution(Lin
and Yang, 1985; Ishikawa and Tsurui, 1987).
Using the solution of this equation, crack growth
life distribution can be determined. This method
seems to be a very reasonable one to analyze
crack growth including physical uncertainties.
However, a sample process for crack growth is
not explicitly derived.

The later type is discussed by Bogdanoff and
Kozin. (1978, 1980, 1983). In these models, crack
growth is described by the discrete Markov chain
(Lise, Rune and Lara, 1991; Kim and Kim,
1995), and the life distribution and the sample
process for crack growth are obtained by using
the transition probability matrix of the Markov
chain. However, since this approach is more
closely related to statistical analysis than to the
particular problem in fracture mechanics, the
physical meanings of the model seem unclear.

To evaluate the variability of fatigue crack
growth, much data must be acquired experimen-
tally. The purpose of this paper is to present a
stochastic model which requires only a small
number of tests to describe the variability of
fatigue crack growth. Fatigue tests are carried out
under constant stress intensity factor range con-
trol, and the variability of fatigue crack growth
rates is investigated by estimating the variability
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of material constants C and s in the Paris
-Erdogan equation from experiments.

2. Theoretical Backgroud

Generally, fatigue crack growth is well de-
scribed by the Paris-Erdogan equation, which is
based upon the principle of fracture mechanics:

da _ m
W—C(AK) (N

where C and s are material constants that are
determined experimentally.

However, material constants C and s should
be treated as variables along the crack path
because of dispersion in experimental results:

G C () (LK) ™ @)

In the Markov chain model, the damage is
assumed to progress along steps of the crack
length §q. Thus the sth state of damage can be
defined as

ai=ao+ida 1=0,1,2,3 -,p (3)

and crack growth rates can be given by

P C () (LB ™ )

Introducing random variables 7 and  based on
the variability of material constants C and  in
the Paris-Erdogan equation, the number of
cycles, 8N, that is used to propagate the crack

one step, 8q, is given as

da

= ZCo(aK) ™ (s)
or
. da
ON=ZC, AR ™ (©)
The expected value of §N; is
_ oa
ELONI = tarym @

Let us assume that the first (S — 1) duty cycles
do not lead to crack growth, with probability
p'%"~Y whereas the §nth duty cycle results in crack
growth, with probability 4. Thus, the probability
distribution of §N is a geometric distribution
(Bogdanoff, 1978) given as
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P[ON=38n]=gp”" (8)

The expected value and variance of the number of
duty cycles are given by the first and the second
moments of the geometric distribution (Bog-
danoff, 1978), respectively:

N _ba
E [aN!] o Co (AKz) mo qi (9)

Var[6N;]=E[3N#] — (E[BN:-])ZZL(;;{"

i

(10)
The state number b can also be obtained from
E[6N;] and Var[oN;]:

7_(_‘ —q) (E[gNJ)f
b= Var [ 6N;] (b

From the discrete Markov chain model, the
transition matrix P is obtained from the transi-

tion probability ¢,(g;=!1—p,) for propagating
the crack one step Sa:
nog 0 - 0
p|) a0 (12)
000 ¢ I

where p; >0, p;+q,=|
Let the initial state of damage be specified by
the (1xX p) row vector P,.

Po=[po (1), p(2), po(3). -, pa(d)] (13)
gpu(l.):l

where, p,(7) is the probability of being in the ;th
state of damage.

From Markov chain theory, the probability
vector P, of being in the yth step is written as

Px:PoPX (]4)
3. Experimental Procedure

3.1 Material and Specimen

The material used in this experiment is a high
strength aluminum alloy 7075-T6. The chemical
composition and the mechanical properties of this
material are tabulated in Table I and Table 2,
respectively. According to ASTM E647-93
(1993), Compact tension (CT) specimens of 50.8
mm ligament (1 =50.8 mm) are used in this
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Table 1 Chemical compostion (wt%).

Designation | Si | Fe | Cu {Mn | Mg | Cr | Zn | Al
7075-T6  10.1010.38]1.25(0.14|9.15{0.22]7.30 | Re.

Table 2 Mechanical properties of 7075-T6 Al-alloy.

Yield strength | Tensile strength Elongation
(MPa) (MPa) (MPa)
461.9 524 12.9

Crosshead speed : | mm/min

Specimen thickness : 3.2 mm

study. To investigate the effect of thickness on
variability, specimens having thickness B=3.2
and 254 mm were used. The tensile axis was
parallel to the rolling direction (L-T).

3.2 Fatigue test

According to ASTM E 647-93(1993), stress
intensity factor range control fatigue tests were
conducted in air at room temperature on a servo
~hydraulic material testing machine (MTS, model
458. 91) having a load capacity of 10 tons.
Sinusoidal cyclic loading of stress ratio (R=
Omin/ Omax) 0.3 and loading frequency 10 Hz was
applied at three different stress intensity factor
range levels. The stress intensity factor ranges
selected were JK =6.5MPa,/m, 8.4MPay/m and
10.3MPa.,/m. During cyclic loading the crack
length was monitored by the compliance method,
and test data were automatically acquired with a
measurement system controlled by PC as the
crack length increase 0. 1 mm.

4. Experimental Results and
Discussion

4.1 The variability in fatigue crack growth

Figure 1 shows the relationship between crack
length ¢ and the number of cycles N under
constant stress intensity factor range JK. Though
AK has a constant value, a difference in inclina-
tion exists in each curve. It means that crack
growth rates do/dN differ from specimen to
specimen due to initial damage state, though they
are of the same material. Figure 2 presents the
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states of stress intensity factor range control and
the variability of crack growth rates along the
crack growth path. The range of stress intensity
factor is well controlled, but the crack growth
rates show remarkable fluctuations due to the
heterogeneity of materials.

Figure 3 (a) and (b) show the relationship
between da/dN and 4K in the case of B=3.2
mm and B=25.4 mm, respectively. Crack growth
rates grow linearly as the stress intensity factor
range increases. This relationship 1s well de-
scribed by the Paris-Erdogan equation. However,
crack growth rates fluctuate even under constant
AK. Thus, model is needed to
describe the scattering of crack growth rates.

a statistical

4.2 The stochastic properties of fatigue
crack growth

Suppose the variability of crack growth rates
due to the heterogeneity of materials depends on
the material constants C and s of the Paris
-Erdogan equation. These values should be treat-
ed as variables along the crack path. Therefore
the material constants C and s can be written as
C(x) and m(x) at crack length x, respectively.
Figure 4 (a), (b) show C(x) and m(x) along
the crack path in the case of thickness 3.2 mm and
25.4 mm, which are estimated from the test results
of the crack growth rates versus stress intensity
factor range at crack length x using least-square
linear regression. The band of variability of
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Fig. 3 Relationship between crack growth rates and stress intensity factor range.
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material constants C(x) and m(x) for in thick-
ness 3.2 mm is larger than the band of variability
for thickness 25.4 mm.

C(x) and m(x) fluctuate randomly because
the crack growth rates vary in spite of a constant
stress intensity factor range. Therefore, random
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variables Z and y are introduced to consider the
variability of fatigue crack growth rates.
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Table 3 The value of each parameter in 2-parameter Weibull function.

B A 7
Co Mo
(mm) a B Var[Z] a B Var[r]
3.2 4.3361E-7 2.7702 3.3492 1.1109 0.1702 21.5665 1.0251 0.0032
254 4.0823E-7 2.9024 8.3710 1.0592 0.0209 49,0847 1.0114 0.0006
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7 and y are the variables according to the
fluctuation of material constant C and s, respec-
tively.

Figure 5 (a) and (b) present the characteristic
of the variables 7 and » evaluated by the 2
-parameter Weibull distribution function. The
values of the parameters are tabulated in Table 3.

F<t>:1—exp<—(~§)“) (17)

where, 3 is a scale parameter and ¢ is a shape
parameter.

As shown in these figures, the variables Z and
» are well described by this distribution function.
Therefore, the variables Z and » can be defined
as the random variables according to the 2
-parameter Weibull distribution.

Figure 6 shows the relationship between the
random variables Z and . They are correlated
with each other linearly, and the band of variabil-
ity increases as the thickness decreases.

4.3 The prediction of fatigue life

Considering these properties of variability in
fatigue crack growth, the prediction of fatigue life
under the condition characterizing the experi-
ments is performed by a discrete Markov chain
model. The flowchart is given Fig. 7. Assuming
the increase of crack length 0.1 mm as one step,
and the duty cycle as 100 cycles at the given stress
intensity factor range, a simulation is carried out.
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=
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Fig. 6 Relationship between random variables 7
and .

The initial probability vector is given as follows:

Po:[l,O()’ ...... s 0] (18)

input :

C,m,aand fofy,a, a, &a, AK, s

a=a
D

generate RND
0<U<l

y=P-inL)) ta
i
L Z=2.65y+2.63

=]

calculate p, g, b

stop

Fig. 7 Flowchart of simulation by this stochastic
analysis.
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Fig. 9 Comparison between the test results and
the predicted fatigue lives by the proposed
model.

model in the case of thickness 3.2 mm. Using the
algorithm for generating random numbers from
the 2-parameter Weibull distribution, random
variables Z and » were obtained. As shown in
this figure, the results describe well the experimen-
tal results in Fig. 1. Figure 9 (a) and (b) present
the probability distributions of the number of
cycles to reach crack lengths 28 and 33 mm. Solid
and dashed curves are the probability distribution
predicted by this model.
experimental results coincide well with these

The corresponding

curves.

5. Conclusions

In this paper, we investigated the stochastic
properties in the variability of fatigue crack
growth rates on 7075-T6 Al-alloy and developed
a stochastic model. We then predicted fatigue
lives which reached certain crack length under the
given stress intensity factor ranges with this
model. The variability of fatigue crack growth
rates can be expressed by random variables 7 and
7 based on the variability of material constants C
and s in the Paris-Erdogan equation. Random
variables Z and » were well described by the 2
-parameter Weibull distribution function and
correlated with each other linearly. From these
relationships, a stochastic model was developed
from the Markov chain model.

The distributions of fatigue lives with respect to
the stress intensity factor range were evaluated by
the stochastic Markov chain model based on the
The results showed
good agreement with experimental results. The

Paris-Erdogan equation.

merits of the proposed model are that only a
small number of tests are required to determine
this function, and fatigue crack growth life
required to reach certain crack length is easily
predicted at the given stress intensity factor range.
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