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Unders tanding the stochastic properties of variabili ty in fatigue crack growth is importailt to  

mainta in ing  the reliability and saf'ety of structures. In this study, a stochastic model is proposed 

to describe crack growth behavior considering the variabili ty of tittigue crack glowth rates due 

to the heterogeneity of nlaterial. Fatigue life dis t r ibut ion is then predicted based on this model. 

To construct this model, fatigue tests are conducted on a high ,,,trerlgth a lunl inunl  alloy 7075 'r6 

under constant  stress intensity factor range control. The variability of fatigue crack growth rates 

is expressed by random variables Z and 7 based on the variabili ty of material consta l t s  C and 

m of the Paris Erdogan equation.  The distr ibution of fatigue life under conslant  stress intensity 

factor ranges is evaluated by the stochastic Markov chain model based on the Paris Erdogan 

equation.  The merit of the proposed model is that only a srnall number  of tesls are required to 

determine this function, and fatigue life required to reach certain crack lengdl .:.tt a g:iven stress 

intensity factor range can be easily predicted. 

K e y  W o r d s  : Markov ( 'ha in  Model, Fatigue Crack (}rowth, Fatigue Life, Z-Parameter  

Weibull  Distr ibution Funct ion,  Stress Intensity Factor Range, Paris Erdogan 

equation,  Random Variable 

N o m e n c l a t u r e  . . . . . . . . . . . . . . . . . . . . . .  

a : Crack length 

m, �9 Initial crack length 

~z~- : Final crack length 

b : State number  

D' : Thickness 

C, *~z : Material constants in Paris Erdogan 

equatiot~ 

Co, ~Ji<~ : Expected values of C' and m 

J/ ,5 : Stress intensity <ictor range 

N : Number  of cycles 

p ; T r a n s i t i o n  m a t r i x  

l~ : T r a n s i t i o n  probabil i ty 

Pc " Initial probabil i ty vector 

p~_ " Probabil i ty vector 

s : Nunlber  oi" specimen 
/_jr " Randonl  number  
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Z , T  

el, fl 

: Random variables according to mate- 

rial constants ( alld sj/ 

: Parameters o f  the 2 parameter 

Weibull  distr ibution 

1. Introduction 

Ulldeislal lding the somces and illechallBillS o |  

damage due to I]ttigue l o a d i n g  i l l  engil-leering 

design, is inlportant to n l a i n a i n  rcli~ibility alld 

s~.ilcly in machirlery structures. Much experimen- 

tall data is therel'ore necessary ill ord0r to e\.ahiate 

the characteristics of" the f'aligue process and 

ensure safety dur ing serx.ice Ioadirlg. 

l ' yp ica l ly ,  exper imental  il~vesligations ol' 

laligue crack growth utldei constant ampli tude 

cyclic' loading have been perlZormed to lind the 

cnr',es relating faligue cracl,, lellglh g/ to the 

number  of cycles ~'\". t lowever, the crack growth 

process contains v;.trJolls pllysical uncertainties 

caused by the heterogerleity of materials, l he re -  

fore, rnany attempts have bee~ recently made to 
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formulate stochastic models for fatigue crack 

growth phenomena and to clarify the properties 

associated with them. 

These stochastic models may be separated into 

two types: models which are derived from a ran- 

domization of the Par is-Erdogan equation 

(1963), which is well known as a fundamental 

law for fatigue crack growth (kin and Yang, 

1985; Ishikawa and Tsurui, 1987; Yoon, Yang 

and Yoon, 1992), and models that analyze the 

stochastic nature of fatigue crack growth using 

the Markov chain or the Markov process(Bog- 

danoff, 1978; Bogdanoff and Kozin, 1980; Yoshio, 

Takao and Hisanobu, 1983; Kozin and Bog- 

danoff, 1983; Lise, Rune and Lara, 1991; Kim and 

Kim, 1995) 

In the first type, a generalized Fokker-Planck 

equation is derived by randomizing the empirical 

Paris-Erdogan equation, which describes the tem- 

poral variability of crack length distr ibut ion(Lin 

and Yang, 1985; lshikawa and Tsurui, 1987). 

Using the solution of this equation, crack growth 

life distribution can be determined. This method 

seems to be a very reasonable one to analyze 

crack growth including physical uncertainties. 

However, a sample process for crack growth is 

not explicitly derived. 

The later type is discussed by Bogdanoff and 

Kozin. (1978, 1980, 1983). in these models, crack 

growth is described by the discrete Markov chain 

(Else, Rune and kara, 1991; Kim and Kim, 

1995), and the life distribution and the sample 

process for crack growth are obtained by using 

the transition probabili ty matrix of the Markov 

chain. However, since this approach is more 

closely related to statistical analysis than to the 

particular problem in fracture mechanics, the 

physical meanings of the model seem unclear. 

To evaluate the variability of fatigue crack 

growth, much data must be acquired experimen- 

tally. The purpose of this paper is to present a 

stochastic model which requires only a small 

number of tests to describe the variability of 
fatigue crack growth. Fatigue tests are carried out 

under constant stress intensity factor range con- 

trol, and the variability of fatigue crack growth 

rates is investigated by estimating the variability 

of  material constants C and m in the Paris 

-Erdogan  equation from experiments. 

2. Theoretical Backgroud 

Generally, fatigue crack growth is well de- 

scribed by the Paris-Erdogan equation, which is 

bused upon the principle of fracture mechanics: 

d a  
d N  - -  C ( z I K )  m ( 1 ) 

where C and m are material constants that are 

determined experimentally. 

However, material constants C and m should 

be treated as variables along the crack path 

because of dispersion in experimental results: 

d a  _ C (x )  (ZIK)  mlx~ (2) 
d N  

In the Markov chain model, the damage is 

assumed to progress along steps of the crack 

length 8a. Thus the ith state of damage can be 

defined as 

a i = a o + i O a  i = 0 ,  1, 2, 3, --., b (3) 

and crack growth rates can be given by 

~a C (x) (z/K~) m(x} (4) 
8N~ 

Introducing random variables Z and r based on 

the variability of material constants C and m in 

the Paris-Erdogan equation, the number of 

cycles, 6"Ni, that is used to propagate the crack 

one step, 6"a, is given as 

5a 
~N, - Z C o  (AK~) '~~ (5) 

o r  

aa 
8Ni  = Z C o  ( ,dKi)  ~ o  (6) 

The expected value of 8Ni is 

8a 
E [SN~] -- Co (AK~) m o  (7) 

Let us assume that the first ( S n -  1) duty cycles 
do not lead to crack growth, with probabili ty 

p(~'-~) whereas the 8nth duty cycle results in crack 

growth, with probabili ty q. Thus, the probabil i ty 

distribution of 8N is a geometric distribution 

(Bogdanoff, 1978) given as 
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p[SN=Sn]=qp~n 1 ( 8 )  

The expected value and variance of the number of 

duty cycles are given by the first and the second 

moments of the geometric distribution (Bog- 

danoff. 1978), respectively: 

8a _ 1 (9) 
E [ S N , . ] -  Co(,~K~) ,,~ q; 

V a t  [ 8N,-] = E [ SNY] - (E  [ 8N~]) z I - - -qi  

(io) 

The state number b can also be obtained from 

E[&V,'] and Vczr[&V,.]: 

b (~ -q ) (EEaN' ] )~  
Var[~N~l (11) 

From the discrete Markov chain model, the 

transition matrix p is obtained from the transi- 

tion probability q~(q , . : l - f i , . )  for propagating 

the crack one step cS'a: 

[Pl 0 ... 0 (11 

0 P2 q2 "" 0 
p =  . . . . .  (12) 

where D,.>O, D i + q , . : l  
Let the initial state of damage be specified by 

the (1 x b) row vector Po. 

P o - [ p o ( l ) ,  p(2) ,po(3) ,  ' - . ,  Po(b)] (13) 
b 

21.~o( i )  = I 
i - [  

where, Do(i) is the probability of being in the ith 

state of damage. 

From Markov chain theory, the probability 

vector Px of being in the xth step is written as 

p ~ _ p o p  ~ (14) 

3. Experimental Procedure 

3.1 Material and Specimen 
The material used in this experiment is a high 

strength aluminum alloy 7075-T6. The chemical 

composition and the mechanical properties of this 

material are tabulated in Table I and Table 2, 

respectively. According to ASTM E647-93 

(1993), Compact tension(CT) specimens of 50.8 

mm ligament ( W - 5 0 . 8  mm) are used in this 

Table 1 Chemical compostion (wt%). 

. . . .  9 9~ 3 R e 

Table 2 Mechanical properties of7075-T6 AI alloy. 

Yield strength Tensile strength Elongation 

(MPa) (MPa) (MPa) 

4619 524 12.9 

Crosshead speed 1 mm/min 

Specimen thickness : 3.2 mm 

study. To investigate the effect of thickness on 

variability, specimens having thickness B=3.2 

and 25.4 mm were used. The tensile axis was 

parallel to the rolling direction (L-T).  

3.2 Fatigue test 
According to ASTM E 647-93(1993), stress 

intensity factor range control fatigue tests were 

conducted in air at room temperature on a servo 

-hydraulic material testing machine (MTS, model 

458. 91) having a load capacity of 10 tons. 

Sinusoidal cyclic loading of stress ratio ( N =  

amm/O'm~,x) 0.3 and loading frequency I0 Hz was 

applied at three different stress intensity factor 

range levels. The stress intensity factor ranges 

selected were Z/K:6.5MPav ' rh ,  8.4MPa,fm and 

10.3MPa4~n. During cyclic loading the crack 

length was monitored by the compliance method, 

and test data were automatically acquired with a 

measurement system controlled by PC as the 

crack length increase 0. 1 ram. 

4. Experimental Results and 
Discussion 

4.1 The variability in fatigue crack growth 
F:igure I shows the relationship between crack 

length a and the number of cycles N under 

constant stress intensity factor range z/K. Though 

z/_K has a constant value, a difference in inclina- 

tion exists in each curve. It means that crack 

growth rates d a / d N  differ from specimen to 

specimen due to initial damage state, though they 

are of the same material. Figure 2 presents the 



1138 Jung-Kyu KIM and Dong-Suk SHIM 

Fig. 1 

Fig. 2 

a - N  curves under constant stress intensity 
factor range. 

states of stress intensity factor range control and 

the variability of crack growth rates along the 

crack growth path, The range of stress intensity 

factor is well controlled, but the crack growth 

rates show remarkable fluctuations due to the 

heterogeneity of materials. 

Figure 3 (a) and (b) show the relationship 

between da/dN and z/K in the case of /3--3.2 

mm and B--25.4  ram, respectively. Crack growth 

rates grow linearly as the stress intensity factor 

range increases. This relationship is well de- 

scribed by the Paris-Erdogan equation. However, 

crack growth rates fluctuate even under constant 

Z/K. Thus, a statistical model is needed to 

describe the scattering of crack growth rates. 

Example of crack growth rate along the crack 
path. 

4.2 The stochastic properties of fatigue 
crack growth 

Suppose the variability of crack growth rates 

due to the heterogeneity of materials depends on 

the material constants C and m of the Paris 

Erdogan equation. These values should be treat- 

ed as variables along the crack path. Therefore 

the material constants C and m can be written as 

C(x) and re(x) at crack length x, respectively. 

Figure 4 (a), (b) show C(x) and re(x) along 

the crack path in the case of thickness 3.2 mm and 

25.4 ram, which are estimated from the test results 

of  the crack growth rates versus stress intensity 

factor range at crack length x using least-square 

linear regression. The band of variability of 

(a) Thickness 3.2 mm (b) Thickness 25.4 mm 

Fig. 3 Relationship between crack growth rates and slress intensity factor range. 
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mater ia l  cons tan t s  C(x)  and re(x) for in thick-  

ness 3.2 mm is larger  t han  the b a n d  of  var iab i l i ty  

for th ickness  25.4 mm. 

C ( x )  and  r e ( x )  f luctuate  r a n d o m l y  because  

the crack g rowth  rates vary in spite of  a cons tan t  

stress intensi ty factor  range. Therefore ,  r a n d o m  

var iab les  Z an d  7 are in t roduced  to cons ider  the 

va r iab i l i ty  o f  fat igue crack  g rowth  rates. 

Z = C ( x )  where  C o = E [ C ( x ) -  (15) 
Co 

re(x) E [ r ( x )  ] (16) r =  where  to= 
mo 

(a) Distribution of material constant C (b) Distribution of material constant m 

Fig. 4 Distribution of material constants. 

(a) Random variable, Z for the variability of C (b) Random variable, r for the variability of m 

Fig. 5 Distribution of random variables using the 2-parameter Weibull ( /3=3.2  ram). 

Table 3 The value of each parameter in 2-parameter Weibull function. 

B 
(mm) 

Co mo 
Z 

Va~[Z] a f i  a ~' 

3.12 4.3361E-7 2.7702 3.3492 1.1109 0.1702 21.5665 1.0251 0.0032 

25,4 4.0823E-7 2.9024 8.3710 1.0592 0.0209 49.0847 1,0114 0.0006 
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Z and r are the variables according to the 

fluctuation of material constant C and m, respec- 

tively. 

Figure 5 (a) and (b) present the characteristic 

of the variables Z and r evaluated by the 2 

-parameter Weibull distribution function. The 

values of the parameters are tabulated in Table 3. 

(~7) 

where, /3 is a ~cale parameter and a is a shape 

parameter. 

As shown in these figures, the variables Z and 

r are well described by this distribution function. 

Therefore, the variables Z and r can be defined 

as the random variables according to the 2 

parameter Weibull distribution. 

Figure 6 shows the relationship between the 

random variables Z and r.  They are correlated 

with each other linearly, and the band of variabil- 

ity increases as the thickness decreases. 

The initial probability vector is given as follows: 

P o = [ l ,  0 O, . . . . . .  , 0 ]  (18) 

Figure 8 shows a - N  curves simulated by this 

4.3 The prediction of fatigue life 
Considering these properties of variability in 

fatigue crack growth, the prediction of fatigue life 

under the condition characterizing the experi- 

ments is performed by a discrete Markov chain 

model. The flowchart is given Fig. 7. Assuming 

the increase of crack length 0.1 mm as one step, 

and the duty cycle as 100 cycles at the given stress 

intensity factor range, a simulation is carried out. 

Fig. 7 Flowchart of simulation by this stochastic 
analysis. 

Fig. 6 Relationship between random variables Z Fig. 8 a - N  curve simulated by the Markov chain 
and r. model (50 samples). 
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(a) Crack length a=28 mm 

(b) Crack length a -33  mm 

Fig. 9 Comparison between the test results and 
the predicted fatigue lives by the proposed 
model. 

model in the case of thickness 3.2 ram. Using the 

algorithm for generating random numbers from 

the 2-parameter Weibull distribution, random 

variables Z and r were obtained. As shown in 

this figure, the results describe well the experimen- 

tal results in Fig. 1. Figure 9 (a) and (b) present 

the probability distributions of the number of 

cycles to reach crack lengths 28 and 33 ram. Solid 

and dashed curves are the probability distribution 

predicted by this model. The corresponding 

experimental results coincide well with these 

curves. 

5. Conclusions 

In this paper, we investigated the stochastic 

properties in the variability of fatigue crack 

growth rates on 7075-T6 Al-alloy and developed 

a stochastic model. We then predicted fatigue 

lives which reached certain crack length under the 

given stress intensity factor ranges with this 

model. The variability of fatigue crack growth 

rates can be expressed by random variables Z and 

r based on the variability of material constants C 

and m in the Paris-Erdogan equation. Random 

variables Z and r were well described by the 2 

-parameter Weibull distribution function and 

correlated with each other linearly. From these 

relationships, a stochastic model was developed 

from the Markov chain model. 

The distributions of fatigue lives with respect to 

the stress intensity factor range were evaluated by 

the stochastic Markov chain model based on the 

Paris-Erdogan equation. The results showed 

good agreement with experimental results. The 

merits of the proposed model are that only a 

small number of tests are required to determine 

this function, and fatigue crack growth life 

required to reach certain crack length is easily 

predicted at the given stress intensity factor range. 
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